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General Form of a Semi-infinite
Program (SIP)

An objective function which is expressed in terms of a finite
number of optimization variables, x, is minimized subject to an

infinite humber of constraints, which are expressed over a com-
pact set P of infinite cardinality:

min f(x)

reX
g(xz,p) <0 Vpe P CR"
Pl =00, X CR"™

T he global SIP algorithm makes additional mild assumptions
e P and X are Cartesian products of intervals
e f(x) is once-continuously differentiable in @

e g(x,p) is continuous in p and once-continuously differentiable
in x



SIP Example
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Engineering Applications

Robotic trajectory planning

Design and operation under uncertainty, robust solutions

Material stress modeling

Rigorous ranges of validity for (kinetic) models with para-
metric uncertainty



General Form of a SIP

min f(x)

reX
g(z,p) <0 Vp € P C R™

Pl =00, X CR"™



Exact Finite Reformulation

Numerical solution techniques for SIPs generally rely on con-
structing a finite reformulation to which known results and al-
gorithms from nonlinear programming (NLP) can be applied.
However, in the general case, the exact finite reformulation is

nonsmooth:

min f(x)

xcX
g(x) = maxg(xz,p) <O
peP

When f(x), and/or g(x,p) are nonconvex, this problem:

e Cannot be solved to global optimality using traditional non-
smooth optimization methods.

e May be solved to global optimality using bilevel programming
techniques - such an approach does not exploit the special
structure of the SIP.



EXxisting Numerical Methods for SIPs

Instead of solving the exact finite reformulation, an iterative al-
gorithm is used to generate a convergent sequence of upper or
lower bounds on the SIP solution.

e Lower-bounding approaches:

o Discretization
o Reduction
e Upper-bounding approach:

o Inclusion-constrained reformulation



Lower-Bounding Algorithms for SIPs

At each iteration, k,

e Select a finite subset of points D, C P
e Formulate the following finitely-constrained subproblem:

min f(x)

recX
g(x,p) <0 Vpe D

e Solving the subproblem to global optimality vields a rigorous
lower bound on the SIP minimum f5IF;

{fre X :g(x,p) <0 VpeDptD{zxe X g(z,p) <0 Vpec P}

Y
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Convergence of Lower-Bounding
Approaches

e Under appropriate assumptions:
o lim fP = 1P

k— 00
o Any accumulation point of the sequence {azk} ‘solves’ the

SIP, i.e., the algorithm converges to the ‘type’ of point
(global min/stationary point/KKT point) for which each
subproblem is solved.

e T he feasibility of the solution cannot be guaranteed at finite
termination, even when subproblems are solved to global op-
timality.

e [ he feasibility of an incumbent solution x* can be tested by
solving a global maximization problem:

max g(z*, p)
peP



Discretization-based Methods

Require relatively mild assumptions on problem structure
Each member set in the sequence {D.} either postulated a
priori, or updated adaptively, e.g.

Dpy1 =D U{p:p=arg rgggg(wk,p)}
SCP, |S]<
Computational cost increases rapidly with the dimen-

sionality of P and the number of iterations, k, since

lim sup inf ||p; — po|| = 0 is required to guarantee con-
k—>ooplepp2€Dk

vergence of the method.

In practice, global optimization methods are ignored, and
subproblems are solved only for stationary/KKT points

= accumulation points of {a:’“} are stationary/KKT points
of the SIP, not global minima.



Reduction-based Methods

Index set Dy11 = {p;}* where {p;}* is the set of local maxi-
mizers of g(x*,p) on P.
At each iteration, k, solve

glx,py(x)) <0 Vi=1,...,m
where X* C X is a neighborhood of a SIP solution. Typically
neither the ‘valid’ neighborhood X™*, nor the number of local
maximizers, r;, are known explicitly.
Convergence requires strong regularity conditions to be sat-
isfied
‘Local’ reduction methods require an initial starting point in
the vicinity X™ of the SIP solution. Convergent ‘globalized’
reduction methods make even stronger assumptions.
Computationally cheaper than discretization methods since
|Dk| — T VEk.



Example: Pathological
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Inclusion Functions

An inclusion for a function g(x,p) on an interval P can be calcu-
lated using interval analysis techniques such that this inclusion
G(x, P) is a superset of the true image of the function g on P,
i.e.,

{9(z,p) : pc P} =[g°, 3] C [G®, G*] = G(x, P)

Gu Lo .

The natural interval extension is the simplest inclusion that can
be calculated for a continuous, real-valued function.



Upper-bounding Problem for the SIP

A subset of the SIP-feasible set may be represented using an
inclusion of g(ax,p) on P:
{x e X: ma]>3<g(a:, p) <0} D{xec X:G% x, P) <0}
pe
This relation suggests the following finite, inclusion-constrained

reformulation (ICR), which may be solved for an upper bound
fICR > fSIP:

min f(x)
xreX
GY(x,P) <0
Any local solution of this problem will be a SIP-feasible upper

bound.



Example

minx—l—a:—l—a:
rex3 17220

2
(1-22p?)" —21p? — 23+ 22 <0 Vp€|[0,1]



Nonsmooth Reformulation

Min/Max terms which appear in the natural interval extension of
g(x,p) result in a nondifferentiable optimization problem (which
IS nonetheless much easier to solve than the exact bilevel pro-
gramming formulation).

min %x%—l—x%—l—%ml
xrcX,pbePb pucpu
py = (¥})?
p% = (p})?
Py = —x1 —2xi+m‘1‘-p8
5= o120+ ok
pl = max (p% - p%, 5 - pY, ph - p%, P% - rh)

1+ a3 —25+pY§ <O
p§ =0, pY =

e Solve the nonsmooth problem to local optimality using non-
differentiable optimization techniques, or

e Reformulate the nonsmooth problem as an equivalent
NLP/MINLP which may be solved to global optimality for a
(potentially) tighter upper bound on the SIP minimum value.



Solving the Inclusion-constrained
Reformulation to Global Optimality

Reformulation as equivalent smooth NLP

e NoO additional nonlinearities due to reformulation
e Problem size (number of constraints) grows exponentially
with the complexity of the constraint expression.

Reformulation as equivalent MINLP with smooth relaxations

e Binary variables introduce additional nonlinearities
e Problem size (number of binary variables) grows polynomi-
ally with the complexity of the constraint expression.



Results from Literature Examples

Problem frewW mﬁx g(xPCW p) fICR mﬁx g(z'“®. p) G* CPU
10 -0.25 0 -0.25 0 0 0.03
b 0.1945 —-2.5.10°8 0.1945 —-2.5.10°8 0 0.42
3b 5.3347 5.3-10°° 39.6287 -0.1233 0 0.06
4°(n,=3) 0.6490 —2.7-107' 1.5574  -0.6505 0O 0.02
4*(n,=6) 0.6161 O. 1.5574 O 0O 0.03
4°(n,=8) 0.6156 O 1.5574 O 0O 0.03
50 4.3012 1.5-10°8 4.7183 0 0 0.05
60 07.1588 —-5.9-10°1 97.1588 5.7-10°° 0 0.09
7° 1 0 1 0 0 0.02
gb 2.4356 9.9-10°8 7.3891 —~3.9.-10°° 0 0.01
Qb -12 0 -12 0 0 0.02
Ke -3 0 -3 0 0 0.02
Lc 0.3431 9.6-10°° 1 -0.2929 0 0.03
M¢ 1 0 1 0 0 0.01
N¢ 0 0 0 0 0 0.02
S¢(n, =3) -3.6743 -1.1640 -3.6406 -2.9997 0 0.33
S¢(n, =4) -4.0871 -1.1997 -4.0451 -0.7076 0 0.33
S¢(n, =5) -4.6986 -2.1733 -4.4496 -0.7619 0 0.27
S¢(n, =6) -5.1351 -2.6513 -4.8541 -2.6833 0 0.28
u¢ -3.4831 2.4-.-10°8 -3.4822 -0.0002 0 0.03



Convergence Property of Inclusion
Functions

In the general case, the inclusion-constrained reformulation un-
derestimates the feasible set of the SIP such that 57 < fICR,
A better approximation of the SIP-feasible set is necessary to
calculate a tighter upper bound for f5/¥. The properties of
convergent inclusion functions can be exploited to derive tighter
inclusion bounds G%(x, P):

where w(P) =p% —pb, 3>1, and 0 < ~ < oo.

Since G% — g% as w(P) | and B 1, tighter inclusions for the
constraint set are obtained using:

e Subdivision: G“(x, P) > G}(x, P) > g“(x, P) where
mel; mel;
e Higher order inclusion function, e.g. 8 = 2 for Taylor models



Convergence Results

Problem ng Np ndi’UTM CPUTM ndi’U[E CPU]E

30 3 1 16 172 512 201
4b 3 1 4 0.1 256 0.42
50 3 1 2 0.40 16 0.16
LC 2 1 16 0.68 512  60.48

e Higher-order Taylor models result in convergence over much
fewer iterations than natural interval extensions

e Fewer iterations (and correspondingly smaller NLP subprob-
lems) do not necessarily result in lower solution times for the
Taylor model formulations

e Reported CPU times do not reflect computational effort re-
quired to generate Taylor coefficients.

b G.A. Watson, Numerical Experiments with Globally Convergent Methods
forSemi-infinite Programming Problems, in Semi-Infinite Programming and
Applications, Proceedings of an International Symposium, Springer-Verlag,
Heidelberg, Germany, Eds. A.V. Fiacco and K.O. Kortanek, 1983.

€ C.J. Price and I.D. Coope, Numerical Experiments in Semi-infinite Program-

ming, Computational Optimization and Applications, 6:169-189, 1996.



Global Optimization of SIPs

Existing lower and upper-bounding methods can be combined
in @ branch-and-bound framework to solve SIPs to guaranteed
global optimality. The convergence of the branch-and-bound

alogorithm rests on two key results:
o Gi(x,P) — g“(x, P) as maxw(Pm) — 0
mEIk

D SIP :
o 7 — f as sup inf ||p poll — O
k ) N Dkzll 1 2||



Branch-and-Bound Framework

At each node solve

ge(x, p) <0 Vp € Dy

min f(x)
reX;
GY(xz,Pn) <0 Vm e I

e fc, gc are convex relaxations of f and g respectively

e g is the level of the branch-and-bound tree at which the node
X; C X occurs

e D is the discretization grid used to define the lower-bounding
problem for all nodes which occur at level q, Dg C D,y Vq

and lim sup inf ||p1 —po||=0
q_>oop1€PPQEDq

e {Py} is the partition of P used to define the upper-bounding
problem for all nodes which occur at level g,

MmaXw(FPmy) > max w(P Vg, lim maXxw(F,;,) =0
mel, (Pm) mel i (m—l—l) q 400 mel, (Pm)



Exclusion Heuristic

Upper-bounding problem:
Exclude subintervals P, m €
I which generate inactive con-
straints at a node X; C X
and its child nodes, i.e., those
which satisfy

L ower-bounding problem:

Exclude points p € Dy which
generate inactive constraints
at a node X; C X and its child
nodes, i.e., those which satisfy




Conclusions

The inclusion-constrained reformulation can be used to iden-
tify feasible upper bound to the SIP solution value by solving
a finite number of NLPs to local optimality (usually one). In
many applications feasibility is more important than optimal-
ity.

The inclusion-constrained reformulation yields a convergent
sequence of upper bounds on the SIP solution value.

When multiple iterations are required, the convergence rate
of the inclusion-constrained reformulation is significantly im-
proved by the use of higher-order inclusion functions.

The SIP branch-and-bound framework enables the solution
of general, nonlinear SIPs to finite e-optimality by combining
existing uppper and lower-bounding approaches for SIPs.



